On the Null Space Property oflq-Minimization for0<q≤1in Compressed Sensing
نویسندگان
چکیده
منابع مشابه
A null space property approach to compressed sensing with frames
An interesting topic in compressive sensing concerns problems of sensing and recovering signals with sparse representations in a dictionary. In this note, we study conditions of sensing matrices A for the `-synthesis method to accurately recover sparse, or nearly sparse signals in a given dictionary D. In particular, we propose a dictionary based null space property (D-NSP) which, to the best o...
متن کاملIntroduction au Compressed sensing. Null Space Property et Restricted Isometry property
On a vu qu’on pouvait réécrire (BP) comme un problème de programmation linéaire et que donc on pouvait implémenter cette procédure de manière efficace même en grandes dimensions N . D’un point de vue théorique, on a montré que si une matrice de mesure A ∈ Rm×N permettait la reconstruction de n’importe quel signal de Σs par Basis Pursuit alors nécessairement m & s log(eN/s), càd on doit avoir au...
متن کاملA Null-Space-Based Weighted `1 Minimization Approach to Compressed Sensing∗
It has become an established fact that the constrained `1 minimization is capable of recovering the sparse solution from a small number of linear observations and the reweighted version can significantly improve its numerical performance. The recoverability is closely related to the Restricted Isometry Constant (RIC) of order s (s is an integer), often denoted as δs. A class of sufficient condi...
متن کاملOn the Null Space Constant for Minimization
The literature on sparse recovery often adopts the “norm” ( ) as the penalty to induce sparsity of the signal satisfying an underdetermined linear system. The performance of the corresponding minimization problem can be characterized by its null space constant. In spite of the NP-hardness of computing the constant, its properties can still help in illustrating the performance of minimization. I...
متن کاملOn the Null Space Constant for ℓp Minimization
The literature on sparse recovery often adopts the `p “norm” (p ∈ [0, 1]) as the penalty to induce sparsity of the signal satisfying an underdetermined linear system. The performance of the corresponding `p minimization problem can be characterized by its null space constant. In spite of the NP-hardness of computing the constant, its properties can still help in illustrating the performance of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2015
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2015/579853